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Abstract 24 

A fundamental challenge in fluorescence microscopy is the inherent photon shot noise 25 

caused by the inevitable stochasticity of photon detection. Noise increases measurement 26 

uncertainty, degrades image quality, and limits imaging resolution, speed, and sensitivity. 27 

To achieve high-sensitivity imaging beyond the shot-noise limit, we provide DeepCAD-28 

RT, a versatile self-supervised method for effective noise suppression of fluorescence 29 

time-lapse imaging. We made comprehensive optimizations to reduce its data 30 

dependency, processing time, and memory consumption, finally allowing real-time 31 

processing on a two-photon microscope. High imaging signal-to-noise ratio (SNR) can be 32 

acquired with 10-fold fewer fluorescence photons. Meanwhile, the self-supervised 33 

superiority makes it a practical tool in fluorescence microscopy where ground-truth 34 

images for training are hard to obtain. We demonstrated the utility of DeepCAD-RT in 35 

extensive experiments, including in vivo calcium imaging of various model organisms 36 

(mouse, zebrafish larva, fruit fly), 3D migration of neutrophils after acute brain injury, 37 

and 3D dynamics of cortical ATP (adenosine 5’-triphosphate) release. DeepCAD-RT will 38 

facilitate the morphological and functional interrogation of biological dynamics with 39 

minimal photon budget. 40 

Introduction 41 

The proper functioning of living organisms relies on a series of spatiotemporally orchestrated 42 

cellular and subcellular activities. Observing and recording these phenomena is considered to 43 

be the first step towards understanding them. Fluorescence microscopy, combined with the 44 
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growing palette of fluorescent indicators, provides biologists with a practical tool capable of 45 

good molecular specificity and high spatiotemporal resolution. Recent advances in 46 

fluorescence imaging have brought us insights into various previously inaccessible processes, 47 

ranging from organelle interactions at nanoscale1-3, to pan-cell footprints during embryo 48 

development4-6, and to whole-brain neuronal dynamics synchronized with certain behaviors7-49 

10. 50 

Among the challenges of fluorescence microscopy, poor imaging SNR caused by limited 51 

photon budget lingeringly stands in the central position. The causes of this photon-limited 52 

challenge are manifold. Firstly, the low photon yield of fluorescent indicators and their low 53 

concentration in labeled cells result in the lack of photons at the source. Secondly, although 54 

using higher excitation power is a straightforward way to increase fluorescence photons, living 55 

systems are too fragile to tolerate high excitation dosage. Extensive experiments have shown 56 

that illumination-induced photobleaching, phototoxicity, and tissue heating will disturb crucial 57 

cellular processes including cell proliferation, migration, vesicle release, neuronal firing, etc11-58 

18. Thirdly, recording fast biological processes necessitates high imaging speed and the short 59 

dwell time further exacerbates the shortage of photons. Finally, the quantum nature of photons 60 

makes the stochasticity (shot noise) of optical measurements inevitable19, 20. The intensity 61 

detected by photoelectric sensors follows a Poisson distribution parameterized with the exact 62 

photon count21. In fluorescence imaging, detection noise dominated by photon shot noise 63 

aggravates the measurement uncertainty and obstructs the veritable visualization of underlying 64 

structures, potentially altering morphological and functional interpretations that follow. To 65 
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capture enough photons for satisfactory imaging sensitivity, researchers have to sacrifice 66 

imaging speed, resolution, and even sample health19, 22. 67 

Comprehensive efforts have been invested to increase the photon budget of fluorescence 68 

microscopy, from designing high-performance fluorophores23-25, to upgrading the excitation 69 

and detection physics19, 26-28, and to developing data-driven denoising algorithms22, 29-31. We 70 

previously developed DeepCAD, a deep self-supervised denoising method for calcium 71 

imaging data, which effectively suppresses the detection noise and improves imaging SNR 72 

more than 10-fold without requiring any high-SNR observations32. A single low-SNR calcium 73 

imaging sequence can be directly used as the training data to train a denoising convolutional 74 

neural network. 75 

Here, with advancements in methods and applications, we present DeepCAD-RT, a 76 

versatile self-supervised denoising method for fluorescence time-lapse imaging with real-time 77 

processing speed and improved performance. By pruning redundant features inside the 78 

network architecture, we constructed a lightweight network and compressed the model 79 

parameters by 94%, which consequently reduced 85% processing time and 70% memory 80 

consumption. Meanwhile, we augmented the training data by 12-fold to alleviate the data 81 

dependency and make the method still tractable with a small amount of data. We show that 82 

such a strategy of combining model compression and data augmentation eliminates 83 

overfitting and makes the training process stable and manageable. Finally, we optimized the 84 

hardware deployment of DeepCAD-RT and achieved an overall improvement of a 27-fold 85 

reduction in memory consumption and a 20-fold acceleration in inference speed, which 86 
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ultimately supported real-time image denoising once incorporated with the microscope 87 

acquisition system. We demonstrate the capability and generality of DeepCAD-RT on a series 88 

of photon-limited imaging experiments, including imaging calcium transients in various 89 

model organisms such as mice, zebrafish, and flies, observing the migration of neutrophils 90 

after acute brain injury, and monitoring cortical neurotransmitter dynamics using a recently 91 

developed genetically encoded ATP sensor33.  92 

Results 93 

Comprehensive optimization of DeepCAD-RT for real-time processing. Limited by the 94 

computationally demanding nature of deep neural networks, the throughput of most deep-95 

learning-based methods for video processing is lower than the data acquisition rate34. To the 96 

best of our knowledge, no deep-learning-based denoising methods for fluorescence imaging 97 

have been demonstrated to have real-time processing capability in practice. The original 98 

DeepCAD was proposed to denoise calcium imaging data in post-processing. For the same 99 

amount of data, its processing time is about five times longer than the acquisition time. 100 

Differently, in this work, our rationale was to provide a compact and user-friendly tool that can 101 

be incorporated into the data acquisition pipeline to enhance the raw noisy data immediately 102 

after acquisition, which serves as the last step of data acquisition and the first step of data 103 

processing. Towards this goal, we started the first round of optimization by simplifying the 104 

network architecture (Fig. 1a). We compressed the network by pruning different proportions of 105 

network parameters and then investigated their performance using synthetic calcium imaging 106 

data simulated with NAOMi35. Synthetic calcium imaging data have paired ground truth 107 
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images that are indispensable for rigorous comparison (Supplementary Fig. 1). Quantitative 108 

evaluation shows that although we removed as many as ~94% (from 16.3 million to 1.0 million) 109 

network parameters, the denoising performance did not deteriorate (Supplementary Fig. 2) 110 

while the memory cost and inference time were reduced respectively by 3.3-fold and 6.6-fold, 111 

which pushed the processing throughput of the network to the same level as imaging (Fig. 1b). 112 

However, unlike denoising in post-processing, real-time processing requires frequent data 113 

exchanges and necessitates extra computational resources for display and interaction. A 114 

practical processing throughput should be 2-3 times higher than imaging to reserve reasonable 115 

design margins. For further acceleration, we carried out the second round of optimization in 116 

hardware deployment by implementing simplified models with TensorRT (NVIDIA), a 117 

toolbox that provides optimized deployment of deep neural networks on specific graphics 118 

processing unit (GPU) cards. On our task, the deployment optimization reduced the memory 119 

cost and inference time by 8.2-fold and 3.0-fold, respectively. Combining model simplification 120 

and deployment optimization, the overall improvement is a 27-fold reduction in memory 121 

consumption and a 20-fold improvement in inference speed (Fig. 1b), making the 122 

implementation of real-time denoising possible. 123 

To incorporate DeepCAD-RT into the data acquisition pipeline of the microscopy system, 124 

we designed three parallel threads for imaging, data processing, and display (Fig. 1c). The 125 

continuous data stream captured by the microscope will be packaged into consecutive batches 126 

in the imaging thread and then seamlessly fed into the processing thread. Once a new batch is 127 

received by the processing thread, the pre-trained model already deployed on GPU starts 128 
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processing and the denoised batch will be passed to the display thread. After removing 129 

overlapping frames, denoised batches will be assembled into a denoised stream and displayed 130 

on the monitor. The three threads keep temporally aligned throughout the whole imaging 131 

session. Both the raw noisy data and denoised data will be saved as separated files once the 132 

imaging session finishes. As a proof-of-concept, we demonstrate real-time denoising on a two-133 

photon fluorescence microscope using DeepCAD-RT (Fig. 1d and Supplementary Fig. 3). The 134 

denoised data with drastically enhanced SNR can be presented simultaneously with the raw 135 

data (Supplementary Video 1), which facilitates the observation and evaluation of biological 136 

dynamics in photon-limited conditions.  137 

Besides real-time denoising, we also optimized the training procedure to make DeepCAD-138 

RT easy to harness in various biological applications. We introduced 12-fold data 139 

augmentation (Supplementary Fig. 4) to reduce its data dependency. Currently, training the 140 

network with a low-SNR video stack containing as few as 1000 frames is sufficient to ensure 141 

satisfactory performance (Supplementary Fig. 5). Moreover, we found that the combination of 142 

model simplification and data augmentation eliminates overfitting (Supplementary Fig. 6), 143 

which was an inherent problem of self-supervised training and required human inspections for 144 

model selection previously32. We compared DeepCAD-RT with DeepInterpolation, another 145 

recently developed denoising method leveraging inter-frame correlations31. The results show 146 

that, with the same amount of training data, DeepCAD-RT significantly outperformed 147 

DeepInterpolation, especially in photon-limited conditions (SNR < 5 dB). On the other side, 148 

DeepCAD-RT can achieve comparable performance with tens of times less training data 149 
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(trained from scratch with 6000 frames) than DeepInterpolation (pre-trained with 225,000 150 

frames and then fine-tuned with 6000 frames) (Supplementary Fig. 7). The high data efficiency 151 

of DeepCAD-RT enables it to be extended to other applications beyond calcium imaging 152 

(Supplementary Fig. 8). In most cases, the data at hand can be directly used for training without 153 

requiring additional large-scale training datasets. Another advantage of DeepCAD-RT is that 154 

its processing speed can be at least an order of magnitude higher than DeepInterpolation even 155 

with the same network complexity and device since DeepCAD-RT outputs the entire 3D stack 156 

from the 3D input while DeepInterpolation just outputs a single frame from the 3D input.  157 

Denoising calcium imaging on multiple model organisms. Although synthetic data can 158 

provide ground-truth images that are not experimentally available, the performance of 159 

denoising methods should be quantitively evaluated with experimentally obtained data for best 160 

reliability. Motivated by this principle, we captured synchronized low-SNR and high-SNR 161 

image pairs with our custom-designed two-photon microscope (Supplementary Fig. 9) for each 162 

type of experiment. The low-SNR data were used as the input while the synchronized high-163 

SNR data with 10-fold SNR were used for result validation (Supplementary Fig. 10). A 164 

standard two-photon microscope was also integrated into our system for cross-system 165 

validation and multi-color imaging.  166 

To demonstrate the capability and generality of our method, we first investigated whether 167 

it could be applied to various calcium imaging experiments. We began by imaging calcium 168 

transient of postsynaptic dendritic spines in cortical layer 1 (L1) of a mouse expressing 169 

genetically encoded GCaMP6f36. Technically, calcium imaging of dendritic spines over a large 170 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.14.484230doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.14.484230


field-of-views (FOV) is particularly challenging because of their small sizes37. Each spine is 171 

usually characterized by as few as several pixels and noise severely contaminates its 172 

spatiotemporal features. After we enhanced the original low-SNR data with our method, the 173 

image SNR was substantially improved and postsynaptic structures can be clearly resolved 174 

even in a single frame (Fig. 2a and Supplementary Video 2). Without noise contamination, the 175 

morphological heterogeneity between mushroom spines and stubby spines became discernable. 176 

Since different spine classes have different functions during development and learning38, 177 

revealing spine morphology is helpful for the study of dendritic computing. For quantitative 178 

evaluation, we extracted image slices along three dimensions (x-y-t) and calculated image 179 

correlations with corresponding high-SNR images. Statistical analysis shows that image 180 

correlations can be significantly improved for all three dimensions after denoising (Fig. 2b), 181 

manifesting the spatial and temporal denoising capability of our method. 182 

Animal models currently used in systems and evolutionary neuroscience are diverse that 183 

extend from jellyfish39 to monkeys40. To test our method on versatile animal models with 184 

different neuron morphologies and brain structures, we imaged in vivo calcium dynamics in the 185 

brain of zebrafish larvae and Drosophila and then denoised the original shot-noise-limited 186 

signals with our method. For zebrafish imaging, we used larval zebrafish expressing nuclear-187 

localized GCaMP6s calcium indicator throughout the whole brain. Because of the shot noise, 188 

raw images deteriorated severely and neurons can be barely recognized. However, after 189 

denoising, the image SNR was improved more than 10-fold and fluorescence signals became 190 

clear (Fig. 2c and Supplementary Video 3). Image correlations along all three dimensions were 191 
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significantly improved (Fig. 2d). In each frame, the distribution of optic tectum neurons can be 192 

clearly recognized with the enhancement of our method (Fig. 2e). Additionally, we also imaged 193 

calcium events of large neuronal populations spanning multiple brain regions and found that 194 

the removal of noise was rather helpful for separating densely labeled cells. (Supplementary 195 

Fig. 11 and Supplementary Video 4). Similarly, we performed time-lapse calcium imaging of 196 

mushroom body neurons in the brain of adult Drosophila. The results show that the enhanced 197 

imaging SNR and image correlations could facilitate the observation of calcium dynamics (Fig. 198 

2f,g and Supplementary Video 5), which verified the effectiveness of our method on various 199 

calcium imaging applications involving different animal models and neuronal structures. Since 200 

smaller animals such as zebrafish and Drosophila are less resistant to high excitation power 201 

than mice, it is difficult to keep the sample healthy and obtain high-SNR imaging data 202 

simultaneously. With its good performance and versatility, DeepCAD-RT can be a promising 203 

tool for calcium imaging to minimize the excitation power and photon-induced disturbance by 204 

removing the shot noise computationally. 205 

Observing neutrophil migration in vivo with low excitation power. Our previous work only 206 

focused on calcium imaging, in which neurons are spatially invariant and their intensity 207 

changes over time. Next, we applied our method to the observation of cell migration, a 208 

complementary task with almost temporally invariant intensity and continuously changing cell 209 

positions. Neutrophils are the most abundant white blood cells in immune defense41. To fully 210 

understand the function of neutrophils, intravital imaging with minimal illumination is essential 211 

because phototoxicity and photodamage would alter cellular and subcellular processes, which 212 
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potentially disturb normal immune response15, 42. We first evaluated the performance of our 213 

method on cell migration observations qualitatively and quantitatively with synchronized low-214 

SNR and high-SNR (10-fold SNR) image pairs captured by our customized system. The results 215 

show that DeepCAD-RT can restore neutrophils of different shapes from noise, as well as the 216 

evolution of morphological features over time (Fig. 3a-c and Supplementary Video 6). Since 217 

the SNR of denoised data is better than high-SNR data of 10-fold SNR, the illumination power 218 

can be equivalently reduced more than 10-fold for linear microscopy and more than 3-fold for 219 

two-photon microscopy. For better comparison, we show the kymographs (x-t projections) of 220 

marked regions. The migration of neutrophils could be visualized directly in denoised data 221 

rather than submersed in noise in low-SNR raw data (Fig. 3d). Quantitative evaluation also 222 

indicates that denoised data are more correlated to high-SNR data (Fig. 3e). Additionally, the 223 

more than 10-fold improvement in image SNR after denoising prompted us to investigate 224 

whether our method could reveal more cellular traits if it took high-SNR data as the input. After 225 

training and inference with the high-SNR data, we found that higher input SNR could produce 226 

much better denoising results. The dynamics of reaction fibers during neutrophil migration 227 

could be visualized after the enhancement of our method (Fig. 3f and Supplementary Video 7).  228 

For fluorescence microscopy, denoising is the first step of subsequent data processing and 229 

downstream biological analysis. A good denoising method can facilitate cell segmentation, 230 

localization, and classification, which are fundamental steps for the study of cell migration. To 231 

figure out the improvement our method brings to segmentation, we segmented neutrophils 232 

from the original noisy images (both low-SNR and high-SNR) and corresponding denoised 233 
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images using Cellpose43 and Stardist44, two recently published methods for cellular 234 

segmentation with state-of-the-art performance45. We enlisted five expert human annotators to 235 

manually label cell borders and obtain ground-truth masks through majority voting (Methods). 236 

Using Intersection-over-Union (IoU) score as the metric, the segmentation performance of the 237 

two methods could be improved by ~30-fold for low-SNR images (Supplementary Fig. 12). 238 

For high-SNR images with 10-fold SNR, we also observed a significant improvement for both 239 

methods because shot noise was removed and cell structures could be well recognized after 240 

denoising.  241 

The migration of neutrophils is coordinated in 3D. Deciphering its spatiotemporal pattern 242 

necessitates volumetric imaging. Using our multi-color two-photon microscope, we imaged a 243 

150×150×30 μm3 volume in the mouse brain after acute brain injury induced by craniotomy. 244 

The volume rate of the entire imaging session was 2 Hz. Fluorescence signals from neutrophils 245 

and blood vessels were recorded simultaneously and then merged into multi-color images post 246 

hoc. To minimize the interference caused by the excitation laser and record the native pattern 247 

of neutrophil migration, the excitation power we used was below 30 mW. Since the 248 

fluorescence labeling of neutrophils was only localized to their membranes, the concentration 249 

of the fluorophore was low. The SNR of the raw data was very low and cell structures and 250 

dynamics could not be visualized because of the contamination of shot noise (Fig. 3g). After 251 

we denoised these low-SNR raw data with our method, shot noise can be effectively suppressed 252 

and the 3D dynamics of neutrophil migration became explicit (Supplementary Video 8), which 253 
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unveiled the phenomenon that a cluster of neutrophils congregating in the early stage of 254 

inflammation diffused over time (Fig. 3h).  255 

DeepCAD-RT facilitates the recording of neurotransmitter dynamics. With the recent 256 

proliferation of different fluorescent indicators, combining fluorescence microscopy and 257 

genetically encoded fluorescent indicators has become a widespread methodology for 258 

interrogating the structural, functional, and metabolic mechanisms of living organisms46. For 259 

the nervous system alone, available activity indicators have gone beyond calcium and already 260 

extended to other intracellular and extracellular neurotransmitters including dopamine47, 48, 261 

GABA (γ-aminobutyric acid)49, glutamate50, 51, acetylcholine25, 52, etc. Similar to calcium 262 

imaging, shot noise is also a restriction for the imaging of other activity sensors, which reduces 263 

the image SNR and limits the in vivo characterization and applications of them. To investigate 264 

whether our method can be extended to neurotransmitter sensors, we took ATP sensor as an 265 

example and recorded cortical ATP release using mice expressing GRABATP1.0
33, a recently 266 

developed genetically encoded sensor for measuring extracellular ATP (Methods). In the low-267 

SNR raw data, shot noise swamped ATP signals (Fig. 4a). After denoising with our method, 268 

these release events can be clearly visualized (Fig. 4b,c and Supplementary Video 9). 269 

Kymographs (y-t projections) show that some subtle ATP-release events that could be omitted 270 

in the raw data become visible (Fig. 4d-f). Quantitatively, we used corresponding high-SNR 271 

images as the ground truth to calculate image correlations along all three dimensions and found 272 

that image correlations could be significantly improved after denoising (Fig. 4g). To compare 273 

ATP traces before and after denoising, we manually annotated 80 firing sites from the heatmap 274 
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of peak ΔF/F0 (Fig. 4h) and then extracted fluorescence traces representing ATP activity over 275 

time. We calculated Pearson correlations between all traces and the ground truth (traces 276 

extracted from the high-SNR data). Statistical results show that the signals of ATP release can 277 

be effectively enhanced and the correlations of all fluorescence traces were improved benefiting 278 

from the removal of noise (Fig. 4i).  279 

Previous studies about in vivo imaging of ATP release were restricted in 2D planes33, 53. To 280 

fully unveil the spatiotemporal distribution and evolution pattern of ATP release in 3D tissues, 281 

we performed volumetric imaging of a 350×350×60 μm3 tissue volume in the mouse brain after 282 

laser-ablated injury. The injury site was located at the center of the volume. Since inflammation 283 

and injury can trigger the release of endogenous ATP, phototoxicity and photodamage caused 284 

by the excitation laser should be minimized to avoid undesired disturbance. Thus, we kept the 285 

excitation power below 40 mW and imaged the 3D volume continuously for one hour. In the 286 

shot-noise-limited raw data, noise is dominant and only a few intense events can be seen (Fig. 287 

5a). To suppress the shot noise and visualize as many release events as possible, we trained a 288 

denoising model with our method and then enhanced the original low-SNR data. Denoised data 289 

had very high SNR and those released events concealed by noise turned out to be discernable 290 

(Fig. 5a and Supplementary Video 10). For better comparison, we present several snapshots of 291 

a single plane at different moments (Fig. 5b,c), which indicates the superior denoising 292 

performance of our method. We manually annotated the position and time of all ATP-release 293 

events throughout the entire session (Fig. 5d) and found that the release frequency is 294 

approximately random during the one-hour imaging (Fig. 5e and Supplementary Fig. 13). 295 
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Owing to the remarkable noise removal capability, the spatial profile of ATP release was 296 

clarified, and performing statistics on their geometric features (diameter and ellipticity) became 297 

feasible (Fig. 5f,g). The successful extension of DeepCAD-RT to the imaging of ATP release 298 

indicates its good potential on other neurotransmitter sensors. 299 

Discussion 300 

Noise is an ineluctable obstacle in scientific observation. For fluorescence microscopy, the 301 

inherent shot-noise limit determines the upper bound of imaging SNR and restricts imaging 302 

resolution, speed, and sensitivity. In this work, we present a versatile method to denoise 303 

fluorescence images with rapid processing speed that can be incorporated with the microscope 304 

acquisition system to achieve real-time denoising. Our method is based on deep self-supervised 305 

learning and the original low-SNR data can be directly used for training convolutional networks, 306 

making it particularly advantageous in functional imaging where the sample is undergoing fast 307 

dynamics and capturing ground-truth data is hard or impossible. We have demonstrated 308 

extensive experiments including calcium imaging in mice, zebrafish, and flies, cell migration 309 

observations, and the imaging of a new genetically encoded ATP sensor, covering both 2D 310 

single-plane imaging and 3D volumetric imaging. Qualitative and quantitative evaluations 311 

show that our method can substantially enhance fluorescence time-lapse imaging data and 312 

permit high-sensitivity imaging of biological dynamics beyond the shot-noise limit. 313 

Removing shot noise from fluorescence images promises to catalyze advancements in 314 

several imaging technologies. For example, in two-photon microscopy, multiplexed excitation 315 

by multiple laser foci can increase imaging speed but the imaging SNR will decrease 316 

quadratically because of dispersed excitation power54-56. Our denoising method provides a 317 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.14.484230doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.14.484230


potential solution to compensate for the SNR loss. Three-photon microscopy can effectively 318 

suppress background fluorescence and improve imaging depth through three-order nonlinear 319 

excitation and longer wavelength57, 58, but its practical use in deep tissue is still limited by low 320 

imaging SNR. Combining our method with three-photon microscopy could expedite its 321 

application in the deep mammalian brain. Light-field microscopy is an emerging technique for 322 

fast volumetric imaging of biological dynamics, but it relies on computational reconstruction 323 

that is sensitive to noise59-61. Disentangling underlying signals from noisy images before light-324 

field reconstruction could eliminate artifacts and ensure high-fidelity results. Moreover, a 325 

recently published work reported that standard Richardson–Lucy deconvolution can recover 326 

high-frequency information beyond the spatial frequency limit of the microscope if there is no 327 

noise contamination62, which inspires us that our method would be helpful for deconvolution 328 

algorithms by denoising input images in advance. Single-molecule localization microscopy 329 

(SMLM) is also susceptible to noise since the localization precision is fundamentally limited 330 

by SNR3, 63. The noise-sensitive nature holds for other super-resolution microscopy techniques 331 

such as stimulated emission depletion (STED) microscopy and structured illumination 332 

microscopy (SIM)64, 65. We reasonably envisage that our method and its future variants would 333 

benefit the development of super-resolution microscopy. 334 

As the core of our method lies in deep learning, its content-dependent trait requires users 335 

to train a specialized model for each task or each type of sample to ensure optimal results. 336 

Developing pre-trained models on large-scale datasets and then transferring them to new tasks 337 

by fine-tuning could be an optional solution to this problem. Another limitation is that adjacent 338 

frames used for training should have approximately identical underlying signals, which is the 339 
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basic assumption of our self-supervised training strategy. Thus, the imaging system should have 340 

adequate temporal resolution relative to the biological dynamics to be imaged. Finally, the 341 

denoising performance of our method improves as the SNR of the input data increases. 342 

Comprehensive noise suppression by collaborating physics-based approaches19, 28 and 343 

computational denoising could be a more powerful way to break the shot-noise limit.  344 
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Methods 345 

Imaging system. The optical setup integrated two two-photon microscopes for different 346 

purposes. One was a standard two-photon microscope with multi-color detection capability for 347 

multi-labeling imaging and cross-system validation. The other one was a custom-designed two-348 

photon microscope to capture synchronized low-SNR and high-SNR (10-fold SNR) images 349 

for result validation (Supplementary Fig. 9). The two systems shared one femtosecond 350 

titanium-sapphire laser source with tunable wavelength (Mai Tai HP, Spectra-Physics). The 351 

excitation laser for all experiments was a linearly polarized Gaussian beam with a 920-nm 352 

central wavelength and an 80-MHz repetition rate. Before being projected into both systems, 353 

the laser beam was first adjusted in polarization by a half-wave plate (AQWP10M-980, 354 

Thorlabs) and modulated in intensity by an electro-optic modulator (350-80LA-02, Conoptics). 355 

A 1:1 4f system composed of two achromatic convex lenses (AC508-100-B, Thorlabs) was 356 

then configured to collimate the laser beam. Another 1:4 4f system (AC508-100-B and AC508-357 

400-B, Thorlabs) was followed to expand the diameter of the beam. A mirror mounted on a 358 

two-position, motorized flip mount (MFF101, Thorlabs) was used to alternate between the two 359 

systems (OFF for the multi-color module and ON for the custom module).  360 

The two systems used the same optical configuration for two-photon excitation. 361 

Specifically, the collimated, scaled laser beam was successively guided onto the fast axis (the 362 

resonant mirror) and the slow axis (the galvanometric mirror) of the galvo-resonant scanner 363 

(8315K/CRS8K, Cambridge Technology). The scanner provided fast 2D raster scanning under 364 

the control of two voltage signals. The orientation of the incident beam should be fine-adjusted 365 
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to ensure the horizontality of the outgoing beam. Then, the output beam was recollimated, 366 

rescaled, and corrected by a scan lens (SL50-2P2, Thorlabs) and a tube lens (TTL200MP, 367 

Thorlabs) to fit the back pupil of the objective and produce a flat image plane. We used a high-368 

numerical-aperture (NA) water-immerse objective (×25/1.05 NA, XLPLN25XWMP2, 369 

Olympus) to expand the detection angle and increase the number of photons that can be 370 

detected. Approximately, the effective excitation NA was 0.7 in our experiments. To perform 371 

3D volumetric imaging, we mounted the objective on a piezoelectric actuator (P-725, Physik 372 

Instrumente) to achieve high-precision axial scanning. For the detection path of the standard 373 

multi-color system, fluorescence photons emitted from the sample were captured by the 374 

objective and then separated from the excitation light by a long-pass dichroic mirror 375 

(DMLP650L, Thorlabs). Another short-pass dichroic mirror (DMSP550, Thorlabs) was 376 

mounted in the detection path to separate green fluorescence and red fluorescence. The green 377 

fluorescence was purified by a pair of emission filter (MF525-39, Thorlabs; ET510/80M, 378 

Chroma) and then detected by a GaAsP photomultiplier tube (H10770PA-40, Hamamatsu). 379 

The red fluorescence was filtered by an emission filter (ET585/65M, Chroma) and then 380 

detected by the same type of PMT. For the detection path of the customized system for 381 

simultaneous low-SNR and high-SNR imaging, the previously mentioned short-pass dichroic 382 

mirror was replaced with a 1:9 (reflectance: transmission) non-polarizing plate beam splitter 383 

(BSN10, Thorlabs). Low-SNR images were formed by the ~10% reflected photons and high-384 

SNR images were formed by the ~90% transmitted photons. In this system, only green 385 

fluorescence was detected and the same filters and PMT were used for both the low-SNR and 386 
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high-SNR detection path. The sensor plane of each PMT was conjugated to the back-pupil 387 

plane of the objective using a 4:1 4f system (TTL200-A and AC254-050-A, Thorlabs) to 388 

maximize the detection efficiency. In general, the maximum FOV of the two two-photon 389 

microscopes was about 720 μm. The typical frame rate was 30 Hz for 512×512 pixels and the 390 

volume rate decreased linearly with the number of planes to be scanned. 391 

System calibration. We imaged green-fluorescent beads to calibrate our imaging systems. For 392 

sample preparation, the original bead suspension was first diluted and embedded in 1.0% 393 

agarose and then mounted on microscope slides to form a single bead layer composed of 394 

sparsely distributed beads. We calibrated both systems using 0.2-μm fluorescent beads (G200, 395 

Thermo Fisher) to obtain the lateral and axial resolution. Since the two systems had identical 396 

excitation optics, they had the same optical resolution. The lateral full width at half maximum 397 

(FWHM) is ~0.6 μm and the axial FWHM is ~3.5 μm (Supplementary Fig. 14). To calibrate 398 

the intensity ratio between the high-SNR detection path and the low-SNR detection path, we 399 

imaged 1-μm fluorescent beads (G0100, Thermo Fisher) and found that the intensity ratio is 400 

about 1:10 (Supplementary Fig. 10a-d), which indicated that the imaging SNR of the high-SNR 401 

detection path was about ten times higher than that of the low-SNR detection path. High-SNR 402 

data synchronized with low-SNR data could serve as a reference to unveil underlying signals. 403 

We also imaged insect slices for validation and the results confirmed our calibration 404 

(Supplementary Fig. 10e-h).  405 

Model simplification. Theoretically, large models with more trainable parameters can 406 

implement extremely intricate functions on the input data. However, the very big model 407 
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(16,315,585 (16.3 M for short) parameters in total) we previously used caused a series of 408 

problems such as long training and inference time, large memory consumption, and serious 409 

overfitting. We sought to solve these problems by simplifying the network architecture. Since 410 

network depth is of crucial importance for the performance66, instead of changing the depth of 411 

the network, we turned to reduce the number of feature maps in each convolutional layer. By 412 

continuously halving network parameters, we constructed five models with exponentially 413 

decreased trainable parameters (16.3 M, 9.2 M, 4.1 M, 2.3 M, 1.0 M, respectively). To evaluate 414 

these models, we used synthetic calcium imaging data of -2.5 dB SNR and trained them with 415 

the same amount of data (6000 frames). The best training epoch of each model was determined 416 

by monitoring its performance on a holdout validation set. Although the number of trainable 417 

parameters was reduced by ~94%, the denoising performance remained almost unchanged 418 

(Supplementary Fig. 2). A more comprehensive assessment including training and inference 419 

time, memory consumption, and output SNR is shown in Supplementary Table 2. The 420 

lightweight model with ~1.0-million parameters was chosen as the final architecture.  421 

Data augmentation. The strategy to eliminate overfitting by drastically reducing trainable 422 

parameters only works when there is enough training data. If only a small dataset is available, 423 

overfitting still occurs even with very small models67. To alleviate the data dependency of our 424 

method and further eliminate overfitting, we designed 12-fold data augmentation to generate 425 

enough training pairs from a small amount of data (Supplementary Fig. 4). Given a low-SNR 426 

time-lapse image stack, thousands of 3D training pairs with overlaps will be extracted from the 427 

input stack. A training pair includes an input patch and a corresponding target patch. The 428 
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proportion of temporal overlapping was automatically calculated according to the number of 429 

training pairs to be extracted. For each training pair, we first swapped the input and target 430 

randomly with a probability of 0.5. Then, we performed six geometric transformations 431 

randomly for the training pair including horizontal flip, vertical flip, left 90-degree rotation, 432 

180-degree rotation, right 90-degree rotation, and no transformation. Overall, there were 12 433 

possible forms for each training pair and they all have the same probability of occurrence, which 434 

inflated the training dataset by 12-fold. We investigated the benefit of our data augmentation 435 

strategy using synthetic calcium imaging data and found that the data dependency of our 436 

method was reduced effectively (Supplementary Fig. 5). A 1000-frame calcium imaging stack 437 

(490×490 pixels) is enough to train a model with satisfactory performance. This feature is 438 

helpful to alleviate the problem of insufficient training data in fluorescence microscopy. To 439 

evaluate the effect of data augmentation on overfitting, we trained a model with data 440 

augmentation and the other one without data augmentation with the same amount of data for a 441 

long training period (35 epochs) and monitored their performance after each epoch. The results 442 

show that training with data augmentation could keep the performance stable compared to the 443 

rapidly degrading performance without augmentation (Supplementary Fig. 6). The optimal 444 

performance was also improved because of augmented training data. Although the combination 445 

of model simplification and data augmentation eliminates overfitting, preparing more training 446 

data is still the most effective way to improve the denoising performance and avoid overfitting. 447 

Network architecture, training and inference. The network architecture in this research 448 

reserves the topology of 3D U-Net68 that utilizes the encoder-decoder paradigm in an end-to-449 
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end manner. To fully exploit spatiotemporal correlations in fluorescence imaging data, all 450 

operations inside the network were implemented in 3D, including convolutions, max-poolings, 451 

and interpolations (Supplementary Figure 14). Compared to our previous architecture32, the 452 

number of feature maps in each convolutional layer was reduced by 4-fold and the total number 453 

of trainable parameters was reduced by 16-fold (1,020,337 compared with 16,315,585)， 454 

which massively improved the training and inference speed and reduced the memory 455 

consumption. For pre-processing, each input stack was subtracted by the average of the whole 456 

stack to handle the intensity variation across different samples and imaging platforms. These 457 

stacks were partitioned into a specified number of 3D (x-y-t) training pairs. The data 458 

augmentation strategy mentioned above would be applied to each training pair. Training was 459 

carried out using the arithmetic average of an L1-norm loss term and an L2-norm loss term as 460 

the loss function. After the input stack flowed through the network, the subtracted average value 461 

would be added back in post-processing. Since the combination of model simplification and 462 

data augmentation eliminated overfitting, the model of the last training epoch could be directly 463 

selected as the final solution. For denoising of 3D volumetric imaging, the time-lapse stack of 464 

each imaging plane was saved as a separate TIFF file. All stacks were used for the training of 465 

the network.  466 

The batch size for all experiments was set to the number of GPUs being used. The patch 467 

size was set to 150×150×150 pixels by default. All models were trained using the Adam 468 

optimizer69 with a learning rate of 5×10-5, and the exponential decay rates for the first-moment 469 

and second-moment estimates were 0.5 and 0.9, respectively. Using our Python code, training 470 
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with 3000 pairs of 3D patches for 20 epochs just took 6.2 hours on a single GPU (GeForce 471 

RTX 3090, Nvidia). The inference process for an image stack composed of 490×490×300 472 

pixels (partitioned into 75 3D patches) took as few as 8 seconds. Multi-GPU acceleration has 473 

been supported by our Python code. The time consumption of training and inference decreases 474 

linearly as the number of GPUs increases. 475 

Real-time implementation of DeepCAD-RT. To achieve real-time processing during 476 

imaging acquisition, we made a program interface to incorporate DeepCAD-RT into our image 477 

acquisition software (Scanimage 5.770, Vidrio Technologies). For further acceleration and 478 

memory conservation, the inference of DeepCAD-RT was optimally deployed on GPU with 479 

TensorRT (NVIDIA), a software development kit providing low-latency and high-throughput 480 

processing for deep learning applications by executing customized operation automatically for 481 

specific GPU and network architecture. Three parallel threads were designed for imaging, data 482 

processing, and display. The schedule for multi-thread programming is depicted in Fig. 1c. 483 

Specifically, the first thread was used for image acquisition, which waited for a certain number 484 

of frames and packaged them into 3D (x-y-t) batches. Adjacent batches had overlapping frames 485 

and half of the overlap would be discarded to avoid artifacts. Then, the second thread got low-486 

SNR images passed by the first thread, processed them, and produced denoised frames. Finally, 487 

these denoised frames were transferred to the third thread for display. When the imaging 488 

process stopped, denoised images would be automatically saved in a user-defined directory. 489 

The real-time implementation was programmed in C++ for best hardware interaction and then 490 

compiled in Matlab (MathWorks), which could be called by any Matlab-based software or 491 
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script. On a single GPU (GeForce RTX 3090, Nvidia), the real-time implementation achieved 492 

more than 20-fold speed-up compared to the original DeepCAD32 and had an extremely low 493 

memory consumption as few as 701 MB with float16 precision. The real-time implementation 494 

of DeepCAD-RT has been packaged as a free plugin with a user-friendly interface 495 

(Supplementary Fig. 3). To transfer pre-trained models, scripts was developed to convert 496 

PyTorch models to ONNX (Open Neural Network Exchange) models and then call TensorRT 497 

builder to optimize ONNX models for a target GPU, which produced engine files that can be 498 

used by TensorRT. The construction of the engine file would eliminate dead computations, fold 499 

constants, and combine operations to find an optimal schedule for model execution.  500 

Animal preparation and fluorescence imaging. Multiple animal models (mouse, zebrafish, 501 

and fly) and fluorescence labeling methods (calcium, neutrophils, ATP release) were associated 502 

in this research. All experiments involving animals were performed in accordance with the 503 

institutional guidelines for animal welfare and have been approved by the Animal Care and Use 504 

Committee of Tsinghua University.  505 

Mouse preparation and imaging. Adult mice (male or female without randomization or 506 

blinding) at 8–16 postnatal weeks were housed in animal facility (24 °C, 50% humidity) under 507 

a reverse light cycle in groups of 1–5. All imaging experiments were carried out with our two-508 

photon microscopes on head-fixed, awake mice.  509 

For functional imaging of neural activity, we used transgenic mice hybridized between 510 

Rasgrf2-2A-dCre mice and Ai148 (TIT2L-GC6f-ICL-tTA2)-D mice expressing Cre-511 

dependent GCaMP6f genetically encoded calcium indicator (GECI). Craniotomy surgeries 512 
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were conducted for chronic two-photon imaging as previously described32. Briefly, mice were 513 

first anesthetized with 1.5% (by volume in O2) isoflurane and a 6.0-mm diameter craniotomy 514 

was made with a skull drill. After removing the skull piece, a coverslip was implanted on the 515 

craniotomy region and a titanium headpost was then cemented to the skull for head fixation. 516 

After the surgery, 0.25 mg/g (body weight) trimethoprim (TMP) was injected intraperitoneally 517 

to induce the expression of GCaMP6f in layer 2/3 cortical neurons across the whole brain. After 518 

the inflammation was gone and the cranial window became clear (~2 weeks after surgery), 519 

mice were head-fixed on a customized holder with a 3D-printed plastic tube to restrict the 520 

mouse body. The holder was mounted on a high-precision, three-axis motorized stage (M-VP-521 

25XA-XYZL, Newport) for sample translation. In vivo calcium imaging (30-Hz single-plane 522 

imaging) was carried out on awake mice without anesthesia. The imaging of dendritic spines 523 

in cortical layer 1 (20-60 μm below the brain surface) required adequate spatial sampling rate 524 

that was achieved by using large zoom factors.  525 

For time-lapse imaging of neutrophil migration, we first performed craniotomy on wild-526 

type mice (C57BL/6J) following the procedures described above. Acute brain injury caused by 527 

craniotomy would induce immune responses in the brain. After the surgery, neutrophils and 528 

blood vessels were simultaneously labeled by injecting 10 μg red (Alexa Fluor 555 conjugate) 529 

wheat germ agglutinin (WGA) dye (W32464, Thermo Fisher Scientific) and 2 μg of green-530 

fluorescence-conjugated Ly-6G/Ly-6C antibody (53-5931-82, eBioscience) intravenously. The 531 

two dyes were dissolved and diluted in 200 μL 1× phosphate-buffered saline (PBS). To avoid 532 

the potential influence of anesthesia on immune response, in vivo two-photon imaging was 533 
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performed in the mouse brain after the mouse was fully awake (~20 minutes after injection). 534 

Imaging experiments should be finished as soon as possible since these dyes are degradable in 535 

the mouse body. Empirically, the whole imaging session should take no longer than 5 hours. 536 

Volumetric imaging was implemented by scanning the objective axially with the piezoelectric 537 

actuator. The frame rate of single-plane imaging was 30 Hz and the volume rate of 3D imaging 538 

was 2 Hz (15 imaging planes). The whole 3D imaging session lasted ~20 minutes. For each 3D 539 

volume, the flyback frame acquired while the piezoelectric actuator was quickly returning from 540 

the bottom plane to the top plane should be discarded. Images of the green channel and the red 541 

channel were captured simultaneously and were separated by post-processing.  542 

For functional imaging of ATP dynamics, wild-type mice (C57BL/6J) were anesthetized 543 

with intraperitoneally injected Avertin (500 mg/kg body weight, Sigma-Aldrich). A cranial 544 

window was opened on the visual cortex and 400-500 nL AAV (AAV2/9-GfaABC1D-ATP1.0, 545 

packaged at Vigene Biosciences) was injected (AP: -2.2 mm relative to Bregma, ML: 2.0 mm 546 

relative to Bregma, and DV: 0.5 mm below the dura, at an angle of 30°) using a micro-syringe 547 

pump (Nanoliter 2000 injector, World Precision Instruments) to express GRABATP1.0
33 in 548 

cortical astrocytes. A 4 mm × 4 mm square coverslip was implanted to replace the skull. After 549 

~3 weeks of recovery and virus expression, two-photon imaging was performed to record ATP-550 

release events in the mouse cortex. Before imaging, brain injury was induced by ablating the 551 

tissue with a stationary laser focus (200 mW) for 5 seconds. The injury site was located at the 552 

center of the 3D imaging volume. Single-plane images were recorded at the plane 20 μm above 553 

the injury site. The frame rate of single-plane imaging was 30 Hz and the volume rate of 3D 554 
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imaging was 1 Hz (30 imaging planes). The flyback frame of each volume should be discarded. 555 

Only signals from the green channel were recorded and the whole 3D imaging session lasted 556 

60 minutes. 557 

Zebrafish preparation and imaging. Transgenic zebrafish (Danio rerio) larvae expressing pan-558 

neuronal GCaMP6s calcium indicator (Tg(HuC:GCaMP6s)) were housed in culture dishes at 559 

28.5 °C in Holtfreter’s solution (59 mM NaCl, 0.67 mM KCl, 0.76 mM CaCl2, 2.4 mM 560 

NaHCO3). At 4-6 days postfertilization (dpf), zebrafish larvae were separated and restricted in 561 

a small drop of 1.0% low melting point agarose (Sigma-Aldrich) and then mounted on a 562 

microscope slide for imaging. A fine-bristle brush was used to adjust the posture of the larvae 563 

to keep the dorsal side up before the agarose solidified. After fixation, the larvae were placed 564 

under the objective and Holtfreter’s solution was used as the immersion medium of the 565 

objective. Before image acquisition started, we previewed the image and rotated the 566 

microscope slide manually to keep the larva horizontal or vertical in the FOV. Two-photon 567 

calcium imaging of spontaneous neural activity was performed on the larvae at 26–27 °C 568 

without anesthesia or motion paralysis. All experiments were single-plane imaging and the 569 

frame rate was 30 Hz for 512×512 pixels. Both large neuronal populations across multiple brain 570 

regions and small neuronal subsets localized in the optic tectum were imaged using different 571 

zoom factors. 572 

Drosophila preparation and imaging. Flies were raised on standard cornmeal medium with a 573 

12h/12h light/dark cycle at 25℃. Transgenic flies UAS-GCaMP7f were crossed with OK107-574 

Gal4 to drive the expression of GCaMP7f24 calcium indicator in essentially all Kenyon Cells. 575 
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All experiments were conducted on female F1 heterozygotes from this cross. Flies at 5 days 576 

posteclosion were anesthetized on ice and mounted in a 3D-printed plastic disk that allowed 577 

free movement of the legs as previously reported71. The posterior head capsule was opened 578 

using sharp forceps (5SF, Dumont) under room temperature in carbonated (95% O2, 5% CO2) 579 

buffer solution (103 mM NaCl, 3 mM KCl, 5mM N-Tris, 10 mM trehalose, 10 mM glucose, 580 

7mM sucrose, 26 mM NaHCO3, 1mM NaH2PO4, 1.5 mM CaCl2, 4mM MgCl2) with a pH of 581 

7.3 and an osmolarity of 275 mOsm. After that, the air sacks and tracheas were also removed. 582 

Brain movement was minimized by adding UV glue around the proboscis and removing the 583 

M16 muscle37, 72. After the preparation, flies were placed under the objective for two-photon 584 

imaging of calcium transients in the mushroom body. To enhance the neural activity, 4-585 

methylcyclohexanol (MCH) and 3-octanol (OCT) 1:1000 diluted in mineral oil (MO) were 586 

used as odors. Flies were randomly given the two odors for five seconds every ten seconds 587 

using a custom-made air pump. All experiments were single-plane imaging at 30 Hz with 588 

512×512 pixels. 589 

Generation of synthetic calcium imaging data. We used synthetic calcium imaging data 590 

(simulated time-lapse image sequences) for quantitative evaluations of our method, as well as 591 

for comparisons with DeepInterpolation31. Our simulation pipeline consisted of synthesizing 592 

noise-free calcium imaging videos (ground truth) and adding different levels of Mixed Poisson-593 

Gaussian (MPG) noise21, 32 to them. To generate noise-free calcium imaging data, we adopted 594 

in silico Neural Anatomy and Optical Microscopy (NAOMi), a simulation method to create 595 

realistic calcium imaging datasets for assessing two-photon microscopy methods35. The 596 
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parameters of our simulation are listed in Supplementary Table 2. Those not mentioned all used 597 

default values. Simulated data had very similar spatiotemporal features as experimentally 598 

obtained data including neuronal anatomy (cell bodies, neuropils, dendrites, etc.), neural 599 

activity, and blood vessels. For noise simulation, we first performed Poisson sampling on noise-600 

free images to simulate the content-dependent Poisson noise. Then we added content-601 

independent Gaussian noise to these data. Poisson noise was set as the dominant noise source. 602 

Different imaging SNRs were simulated by different relative photon numbers that changed the 603 

intensity of input noise-free images (Supplementary Fig. 1).  604 

Neutrophil segmentation. Four types of data were involved in this experiment, i.e., raw data 605 

(low-SNR), high-SNR (10× SNR) data, denoised raw data, and denoised high-SNR data. Ten 606 

representative images with relatively sparse cells were selected from the dataset of single-plane 607 

neutrophil imaging for semantic segmentation. To obtain ground-truth segmentation masks, 608 

five human experts were recruited to annotate all neutrophils in each denoised high-SNR image 609 

using the ROI Manager toolbox of Fiji. The final ground-truth masks were determined by 610 

majority voting. Neutrophil segmentation was conducted using Cellpose43 and Stardist44, two 611 

CNN-based, generalist algorithms for cellular segmentation. For both methods, default 612 

parameters and pre-trained models were used without additional training. Segmentation 613 

performance was quantitatively evaluated with the Intersection-over-Union (IoU) score73 614 

defined as 615 

A B
IoU

A B





  616 
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where A is the mask segmented by algorithms and B is the ground truth. Statistical analysis and 617 

representative results were summarized in Supplementary Fig. 12. 618 

3D visualization. For volumetric imaging of neutrophil migration and ATP release, we 619 

performed 3D visualization to reveal the spatiotemporal patterns of biological dynamics. Imaris 620 

9.0 (Oxford Instruments) was used for the visualization of all volumetric imaging data. Both 621 

the original low-SNR data and denoised data were imported into Imaris, rendered with pseudo-622 

color, and 3D reconstructed using the maximum intensity projection mode. The brightness of 623 

data before and after denoising was adjusted to make them have a similar visual effect. The 624 

contrast of low-SNR data was fine-tuned to show underlying signals as clearly as possible. All 625 

values for gamma correction were set to one. The red channel (blood vessels) of neutrophil 626 

migration was averaged by multiple frames to improve its SNR and then merged with the green 627 

channel. Crosstalk signals out of the blood vessel were manually suppressed with Fiji. 628 

Animations were generated by automatically interpolating intermediate frames between 629 

selected keyframes. 630 

Annotation of ATP-release events. The whole annotation pipeline was implemented on the 631 

denoised data (Supplementary Figure 13). The spatial shape of each ATP-release event could 632 

be modeled as an ellipsoid. To obtain the center position and peak time of each event throughout 633 

the whole imaging session, we manually annotated them by adding measurement points in 634 

Imaris. All spatial and temporal coordinates were exported from the software after annotation. 635 

Events at the edge of the volume were excluded because only a part of them appeared in the 636 

FOV. Based on these annotated coordinates, intensity profiles along all three dimensions of 637 
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each event were extracted from denoised stacks with a custom Matlab (MathWorks) script. 638 

Gaussian fitting was performed for all intensity profiles to reduce the influence of background 639 

fluctuations. Then, all fitted Gaussian curves were deconvolved with the system point spread 640 

function (PSF) (Supplementary Figure 15) using standard Richardson–Lucy algorithm74, 75. 641 

This step eliminated the influence of limited and anisotropic spatial resolution. The diameter of 642 

these ATP-release events could be extracted in each dimension, which was defined as the 643 

FWHM of deconvolved gaussian curves. The ellipticity of release events was defined as 644 

Ellipticity =
a b

a


 645 

where a is the major axis of the ellipse and b is the minor axis of the ellipse. Ellipticity was 646 

calculated for each 3D release event in all three orthogonal coordinate planes (XY, YZ, XZ). 647 

Performance metrics. To quantitatively evaluate the performance of our method, both 648 

synthetic data and experimentally obtained data were used. For synthetic calcium 649 

imaging data, ground-truth images were available and SNR was calculated to quantify 650 

the denoising performance. SNR was defined as the logarithmic form: 651 

2

2
10 2

2

10 log
y

SNR
x y




  652 

where x is the denoised data and y is the ground truth. For experimentally obtained data, 653 

synchronized high-SNR data with 10-fold SNR acquired with our system were used as 654 

the reference of underlying signals. Pearson correlation coefficient (R) was used as the 655 

performance metric, which is formulated as  656 

E ( )( )
=

x y

x y

x y
R

 
 

     657 
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where x and y are the denoised data and corresponding high-SNR data, respectively; μx 658 

and μy are the mean values of x and y; σx and σy are the standard deviations. The operator 659 

E represents arithmetically averaging. Pearson correlation was used for both images 660 

and fluorescence traces. All performance metrics were implemented with custom 661 

Matlab scripts and built-in functions. 662 

Statistics and reproducibility. Sample sizes and statistics are reported in the figure 663 

legends and text for each experiment. All boxplots were plotted in the format of 664 

standard Tukey box-and-whisker plot. The box indicates the lower and upper quartiles 665 

while the line in the box shows the median. The lower whisker represents the first data 666 

point greater than the lower quartile minus 1.5× the interquartile range (IQR). Similarly, 667 

the upper whisker represents the last data point less than the upper quartile plus 1.5× 668 

the IQR. Outliers were plotted in small black dots. For the comparison of images and 669 

fluorescence traces before and after denoising, one-sided paired t-test was performed 670 

and P values were indicated with asterisks. Representative frames were demonstrated 671 

in the figures and similar results were achieved on more than 1500 frames for all 672 

experiments. 673 

Data availability 674 

We have no restriction on data availability. All source data (~250 GB), including synthetic 675 

calcium imaging data, experimental recordings of calcium dynamics, neutrophil migration, and 676 

cortical ATP release, have been archived and made publicly available at 677 

https://cabooster.github.io/DeepCAD-RT/Datasets/. 678 
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Code availability 679 

All relevant resources are readily accessible on our GitHub page 680 

https://cabooster.github.io/DeepCAD-RT/. The source PyTorch code, demo notebooks (in 681 

Jupyter Notebook and Google Colab), and the code for real-time implementation can be found 682 

at https://github.com/cabooster/DeepCAD-RT/. A detailed tutorial for all codes has been 683 

provided at https://cabooster.github.io/DeepCAD-RT/Tutorial/.  684 
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 884 

Fig. 1 | Optimization and real-time schedule of DeepCAD-RT. a, Model simplification by feature 885 
pruning. The total number of model parameters was reduced from ~16.3 million (16,315,585) to ~1.0 886 
million (1,020,337) for higher processing speed and less memory consumption. b, Performance comparison 887 
between DeepCAD and DeepCAD-RT. Deployment optimization refers to hardware acceleration by further 888 
optimizing the deployment of deep neural networks on graphics processing unit (GPU) cards. An example 889 
image sequence of 490×490×300 (x-y-t) pixels was partitioned into 75 patches (150×150×150 pixels 40% 890 
overlap) to obtain these performance measurements on the same GPU (GeForce RTX 3090, Nvidia) with 891 
one batch size. Totally, ~2.53×108 pixels flowed through the network. All hyperparameters remained the 892 
same except the method. The red dashed line in the rightmost panel indicates the imaging time (~9.6 s) of 893 
the example data. c, Real-time schedule of DeepCAD-RT. Continuous data stream acquired from the 894 
microscope acquisition software was packaged into 3D (x-y-t) mini-batches and then fed into DeepCAD-895 
RT. To maximize the processing speed, three parallel threads were programmed for image acquisition, data 896 
processing, and display, respectively. For each batch, half of the overlap was discarded to avoid marginal 897 
artifacts. Overlapping frames between two consecutive batches are rendered with overlapping colors. d, 898 
Schematic of real-time denoising implemented with DeepCAD-RT on a two-photon microscope. Raw noisy 899 
data and the corresponding denoised data are displayed synchronously, which will be saved as separated 900 
files automatically at the end of the imaging session. 901 
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Fig. 2 | Universal denoising of calcium imaging in mouse, zebrafish, and Drosophila. a, Imaging 903 
calcium transients in dendritic spines of a mouse expressing genetically encoded GCaMP6f calcium 904 
indicator. One example frame is shown for the low-SNR raw recording (top), DeepCAD-RT denoised 905 
recording (middle), and synchronized high-SNR recording with 10-fold SNR (bottom). Magnified views 906 
of the yellow boxed region show calcium dynamics of two spatially adjacent dendritic branches. Each frame 907 
was integrated for 33 ms to ensure high temporal resolution. Red arrowheads point to a mushroom spine and 908 
yellow arrowheads point to a stubby spine. Scale bar, 20 μm for the whole field-of-view (FOV) and 5 μm for 909 
magnified views. b, Boxplots showing image correlations along three dimensions (x-y-t) before and after 910 
denoising. The high-SNR data with 10-fold SNR was used as the reference for correlation computing. XY 911 
slice, N=6000; YT slice, N=246, XT slice, N=489. c, Time-lapse imaging of calcium dynamics of optic 912 
tectum neurons in the zebrafish brain (HuC:GCaMP6s). Top, the original low-SNR data. Middle, 913 
DeepCAD-RT enhanced data. Bottom, high-SNR recording with 10-fold SNR. Magnified views show the 914 
neural activity of the yellow boxed region in a short period. Each frame was integrated for 66 ms. Scale bar, 915 
20 μm for the entire FOV and 5 μm for magnified views. d, Pearson correlations of image slices along three 916 
dimensions before and after denoising. XY slice, N=6000; YT slice, N=246, XT slice, N=246. e, Intensity 917 
profiles of the yellow dashed line in c. Pixels intensities were extracted from 2-fold down-sampled images 918 
and all traces were smoothed by moving average with a 3-pixel kernel to suppress the noise. f, Denoising 919 
performance of DeepCAD-RT on calcium imaging of Drosophila mushroom body (GCaMP7f). The same 920 
frame is shown for the original low-SNR data (left), DeepCAD-RT denoised image (middle), and high-921 
SNR image with 10-fold SNR (right). Magnified views show snapshots of the yellow boxed region at three 922 
moments. Each frame was integrated for 33 ms. Scale bar, 10 μm for the whole FOV and 5 μm for magnified 923 
views. g, Boxplots showing the improvement of image correlation after denoising. XY slice, N=12000; YT 924 
slice, N=241, XT slice, N=335. Asterisks denote significance levels tested with one-sided paired t-test. 925 
****P < 0.0001 for all comparisons.  926 
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Fig. 3 | Observing 3D migrations of neutrophils in the mouse brain in vivo. a, Low-SNR images of 928 
neutrophil migration without denoising. b, Images denoised with DeepCAD-RT. c, Synchronized high-929 
SNR images with 10-fold SNR. Blue arrowheads point to the elongated tail of a migrating neutrophil. 930 
Magnified views of the yellow boxed region showing the morphological evolution of neutrophils in a 60 s 931 
time window. Red closed lines annotate the border of a neutrophil during migration. Neutrophils were 932 
labeled with a fluorescent-conjugated Ly-6G antibody. Each frame was integrated for 100 ms and the entire 933 
time-lapse imaging session lasted 644 s. Scale bar, 50 μm for the whole FOV and 10 μm for magnified 934 
views. d, XT slices along the yellow dashed line in c of low-SNR raw data (left), DeepCAD-RT denoised 935 
data (middle), and corresponding high-SNR data with 10-fold SNR (right). Scale bar, 20 μm for x and 50 s 936 
for t. e, Boxplots showing Pearson correlations of image slices along three dimensions (x-y-t) before and 937 
after denoising. XY slice, N=6440; YT slice, N=512, XT slice, N=512. P values were calculated by one-938 
sided paired t-test. ****P < 0.0001 for all comparisons. f, Denoising high-SNR data with DeepCAD-RT 939 
reveals subcellular dynamics of neutrophils. Reaction fibers are indicated with arrowheads. Scale bar, 10 940 
μm. g, 3D imaging of neutrophil migration in a 150×150×30 μm3 volume (15 planes) after acute brain 941 
injury. The raw noisy volume (left) and corresponding denoised volume (right) are visualized with the same 942 
perspective. Acute brain injury was induced by craniotomy. Neutrophils were labeled with a fluorescent-943 
conjugated Ly-6G antibody (the green channel). Blood vessels were stained with a wheat germ agglutinin 944 
(WGA, the magenta channel) dye. Since blood vessels are stationary, noise in the magenta channel was 945 
removed by averaging multiple frames. Scale bar, 50 μm. h, Images of a single plane before (top) and after 946 
(bottom) denoising. DeepCAD reveals the diffusion of the neutrophil population. Magnified views of 947 
yellow boxed regions are shown next to each image. Scale bar, 50 μm for the entire FOV and 10 μm for 948 
magnified views.  949 
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 950 

Fig. 4 | Denoising performance of DeepCAD-RT on neurotransmitter imaging in living mice. a, Low-951 
SNR recording of extracellular ATP release in the mouse brain. b, DeepCAD-RT enhanced data with low-952 
SNR recording as the input. c, Synchronized high-SNR data with 10-fold SNR. Magnified views showing 953 
ATP dynamics in the yellow boxed region in a 2-second period. Each frame was integrated for 67 ms. Scale 954 
bar, 50 μm for the large FOV and 10 μm for magnified views. d-f, YT slices along the dashed line in c. Two 955 
ATP-release events are indicated with arrowheads of different colors. Scale bar, 50 μm for y and 50 s for t. 956 
g, Pearson correlation coefficients of XY, YT, and XT slices before and after denoising. XY slice, N=7000; 957 
YT slice, N=476, XT slice, N=476. h, Peak ΔF/F0 of high-SNR data during the whole imaging session 958 
(~480 s). Manually annotated release sites are marked with white circles (N=80). Scale bar, 50 μm. i, Left, 959 
boxplots showing Pearson correlations of fluorescence traces extracted from release sites in h before and 960 
after denoising (N=80). High-SNR traces extracted from 10-fold SNR data were used as the ground truth 961 
for correlation calculation. Right, increases of trace correlation. Each line represents one of 80 traces and 962 
increased correlations are colored green. P values calculated by one-sided paired t-test are specified with 963 
asterisks. ****P < 0.0001 for all comparisons.  964 
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Fig. 5 | DeepCAD-RT reveals the spatiotemporal patterns of extracellular ATP in vivo after laser-966 
induced brain injury. a, 3D visualization of ATP-release events in a 350×350×60 μm3 volume (30 planes, 967 
1 Hz volume rate) after laser-induced brain injury. Left, low-SNR raw volume without denoising. Right, 968 
the same volume enhanced with DeepCAD-RT. A representative moment is demonstrated here and similar 969 
performance was achieved throughout the whole imaging session (1 hour, 3600 volumes). Four ATP-release 970 
events are indicated with arrowheads of different colors. The laser-ablated point (red dashed circle) was 971 
located at the center of the volume. Scale bar, 50 μm. b, Example raw frames of a single plane at four 972 
different time points. c, DeepCAD-RT enhanced frames corresponding to those in b. Magnified views of 973 
yellow boxed regions are shown under each image. Scale bar, 100 μm for the whole FOV and 20 μm for 974 
magnified views. d, The spatiotemporal distribution of ATP release during the one-hour-long recording. 975 
The release time is color-coded and the diameter of each release event scales to the size of each circle. The 976 
intersections of red dashed lines indicate the 3D location of the laser-induced injury. e, Counting ATP-977 
release events along the time axis. The binning width is 2 min. f, Boxplots showing diameters of all release 978 
events (N=196) in three orthogonal dimensions. X, 13.131 ± 0.3090; Y, 12.125 ± 0.2911; Z, 11.907 ± 0.3287 979 
(mean ± s.e.m.). g, Statistics on the ellipticity of all release events (N=196) in three orthogonal coordinate 980 
planes. XY, 0.182 ± 0.0109; YZ, 0.213 ± 0.0114; XZ, 0.205 ± 0.0109 (mean ± s.e.m.). 981 
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